Initially, this problem seems like it requires some clever observation because of how large the constraints are.
However, notice that an \(O(NQ)\) solution is sufficient: we can simply store the state of the grid and update single points. When we drop a ball, we can just simulate it falling because the path never branches.
The constraints are just low enough for this to pass.
Time: \(O(NQ)\)
Memory: \(O(NM)\)
#include <bits/stdc++.h>
#define FOR(i, x, y) for (int i = x; i < y; i++)
typedef long long ll;
using namespace std;
char g[1001][1001];
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
int n, m, q;
cin >> n >> m >> q;
FOR(i, 1, n + 1) FOR(j, 1, m + 1) cin >> g[i][j];
while (q--) {
char c;
cin >> c;
if (c == 'U') {
int x, y;
char k;
cin >> k >> x >> y;
g[x][y] = k;
} else {
int x;
cin >> x;
FOR(i, 1, n + 1) {
if (g[i][x] == '/') x--;
else if (g[i][x] == '\\') x++;
}
cout << x << '\n';
}
}
return 0;
}