We use DSU and a line sweep to solve this problem.
Firstly, notice that we can form connected components from the platforms. The frog can reach any 2 platforms that are in the same component.
DSU is the perfect data structure for this and we can line sweep to find which platforms are reachable from which.
Next, notice that for platform \(A\), if \(C_y > B_y > A_y\) for platforms \(B\) and \(C\) that overlap with \(A\), if the from can reach \(C\) from \(A\), it can also reach \(B\) from \(A\).
Therefore, while doing the line sweep, we can simply check the 2 platforms with the lowest absolute \(y\) difference from the current platform since they are the only "critical" platforms.
Time: \(O(N \log{N} + Q)\)
Memory: \(O(N)\)
#include <bits/stdc++.h>
#define FOR(i, x, y) for (int i = x; i < y; i++)
using namespace std;
typedef long long ll;
struct Event {
int x, y, id, type;
bool operator<(Event b) {
return x < b.x;
}
};
int c[100001];
int find(int a) {
while (c[a] != a) c[a] = c[c[a]], a = c[a];
return a;
}
void onion(int a, int b) {
c[find(a)] = c[find(b)];
}
Event events[200001];
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
int n, q, h;
cin >> n >> q >> h;
FOR(i, 1, n + 1) c[i] = i;
FOR(i, 1, n + 1) {
int x, y, l;
cin >> x >> y >> l;
events[2 * i - 1] = {x, y, i, 1};
events[2 * i] = {x + l, y, i, 0};
}
sort(events + 1, events + 2 * n + 1);
set<pair<int, int>> active; // y coord and id
FOR(i, 1, 2 * n + 1) {
int curr_x = events[i].x;
vector<Event> to_process = {events[i]};
while (i < 2 * n + 1 && events[i + 1].x == curr_x) {
i++;
to_process.push_back(events[i]);
}
vector<pair<int, int>> to_query;
for (Event i : to_process) {
if (i.type) {
active.insert({i.y, i.id});
to_query.push_back({i.y, i.id});
} else active.erase({i.y, i.id});
}
for (pair<int, int> i : to_query) {
auto pos = active.find(i);
if (pos != active.begin() && i.first - (*prev(pos)).first <= h)
onion(i.second, (*prev(pos)).second);
if (pos != prev(active.end()) && (*next(pos)).first - i.first <= h)
onion(i.second, (*next(pos)).second);
}
}
while (q--) {
int a, b;
cin >> a >> b;
if (find(a) == find(b)) cout << "YES\n";
else cout << "NO\n";
}
return 0;
}