
South African Computer Olympiad
Camp 1, 2009

Day 1

Overview

Author(s) Julian
Kenwood

Marco Gallotta Max Rabkin

Problem broken wrapping washing

Source broken.c
broken.cpp

wrapping.c
wrapping.cpp

washing.c
washing.cpp

Input file stdin stdin stdin

Output file stdout stdout stdout

Time limit 1 second 1 second 1 second

Number of tests 10 10 10

Points per test 10 10 10

Detailed feedback Yes No Yes

Total points 100 100 100

The maximum total score is 300 points.

http://olympiad.cs.uct.ac.za/contest.html

Sat 28 Feb 2009



South African Computer Olympiad
Camp 1, 2009

Day 1

Broken Compiler
Julian Kenwood

Introduction

Bruce and Carl have recently left university to start their
own software company. Unfortunately, they only had
enough money to buy a broken compiler for their projects.
They have just completed the code of their first project
for the Vocational Guidance Counselor’s office, but their
compiler is just too broken to compile their project. You
must help Bruce and Carl compile their project.

Task

The project has N modules numbered 1 to N . Each mod-
ule may have several dependencies. Before a module can
be compiled, all of its dependencies must have already
been compiled.

The compiler is not only broken, but also malicious. It
will only accept compiling of the project’s modules in the
lexicographically smallest possible ordering. Your job is
to find this ordering.

Example

Figure 1: Example project.

Assume Bruce and Carl’s project is broken up into 5
modules with 4 dependencies. Modules 1 and 3 each de-
pend on module 2. Module 2 depends on module 4, while
module 4 depends on module 5.

From figure 1, we can see that we must compile modules
5, 4 and 2 before modules 1 and 3. This gives us two
possible orderings: both 5 4 2 1 3 and 5 4 2 3 1 will compile
the entire project. Ordering 5 4 2 1 3 is lexicographically
the smallest (1 comes before 3) and is therefore the answer.

Input (stdin)

The first line of input contains two space-separated in-
tegers, N and D: the number of modules and number
of dependencies respectively. The next D lines each con-
tain two space-separated integers, Ai and Bi: indicating

that module Ai depends on (and must be compiled after)
module Bi.

Sample input

5 4
1 2
3 2
2 4
4 5

Output (stdout)

Output N integers one per line, representing the lexico-
graphically smallest ordering. If no such ordering exists,
output only −1.

Sample output

5
4
2
1
3

Constraints

• 1 ≤ N ≤ 100 000

• 1 ≤ D ≤ 200 000

• No two dependencies will be equal

Additionally, in 50% of the test cases:

• 1 ≤ N ≤ 10 000

• 1 ≤ D ≤ 20 000

Time limit

1 second.

Detailed feedback

Detailed feedback is enabled for this problem.

Scoring

A correct solution will score 100% while an incorrect so-
lution will score 0%.

Sat 28 Feb 2009



South African Computer Olympiad
Camp 1, 2009

Day 1

Wrapping the Rock
Marco Gallotta

Introduction

Keegan, the infamous local bergie, has had enough of
watching everyone celebrate Christmas and has decided
this is the year he’ll join in the fun. He has chosen the
perfect present for his Uncle Lucky — the largest rock
he can find. Unfortunately though, he’s made a terrible
job of wrapping up the rock and has left many sections
uncovered.

Task

Keegan can purchase sheets of wrapping paper large
enough to cover K millimeters of the rock’s circumfer-
ence. He cannot afford scissors so he cannot cut up the
sheets into smaller pieces. Help him determine the min-
imum number of sheets he needs to purchase in order to
cover the uncovered sections. A single sheet is not long
enough to cover two sections that are exactly K millime-
ters apart. Covering a section with more than one sheet is
acceptable, but every section must be covered. The rock
is shaped such that the uncovered sections form a ring
around the rock, allowing sections neighbouring on either
side of the section at location 0 to be covered by a single
sheet, if wide enough of course.

Example

Consider a rock R = 10 millimeters in circumference, with
uncovered sections at 0, 9, 4 and 6 millimeters (Keegan
randomly chooses a reference point which he labels po-
sition 0). The sheets can each cover K = 2 millimeters
of the rock’s circumference. The sections at 0 and 9 mil-
limeters can be covered with a single sheet, since the rock
is circular. The other two sections require two separate
sheets, giving a total of three sheets required to wrap the
rock.

Input (stdin)

The first line of input contains three space-separated inte-
gers: R, the circumference of the rock; N , the number of
uncovered sections; and K, the length (in millimeters) of
the rock’s circumference that a sheet of wrapping paper
can cover. The next N lines each contain a single inte-
ger: the location Li of an uncovered section in millimeters.
The locations are provided in sorted order.

Sample input

10 4 2
0
4
6
9

Output (stdout)

Output a single integer: the minimum number of sheets
required to wrap the rock.

Sample output

3

Constraints

• 1 ≤ R ≤ 231

• 0 ≤ N ≤ 1 500 000

• 1 ≤ K ≤ R

• 0 ≤ Li < Lj < R for all i < j

Additionally, in 80% of the test cases:

• 0 ≤ N ≤ 750 000

Additionally, in 40% of the test cases:

• N ≤ 80 000

• 1 ≤ K ≤ 100

Scoring

A correct solution will score 100% while an incorrect so-
lution will score 0%.

Sat 28 Feb 2009



South African Computer Olympiad
Camp 1, 2009

Day 1

Washing Line
Max Rabkin

Introduction

Fred the manic storekeeper is doing his laundry, but has
discovered that his washing line is rather weak. He wants
to find the segment of the washing line with the heaviest
load of clothes, so that he can reinforce that segment to
stop the line breaking.

For some reason, Bruce’s laundry got mixed in with
Fred’s, so some of the laundry items have negative weights.

Because of his mania, Fred doesn’t put the clothes up
in order. From time to time, Fred will move the rein-
forcement to a different segment to take the new clothes
into account; if no segment has positive weight, he won’t
bother to reinforce any segment.

Task

Given the sequence of weights on the line, and any up-
dates, find the largest sum of weights of a consecutive
subsequence.

Example

Say the original sequence of weights is 1, 2,−1. Then the
heaviest subsequence is 1, 2, with weight 3. If an item of
weight 4 is inserted at the end, then the heaviest subse-
quence will be the sequence itself, with weight 6.

Input/Output

Your program must read commands from standard input.
The three commands are:

I p w Insert an item of weight w at position p. The position
before the current first item is p = 0, and the position
after the kth item is p = k. If there are n items on
the line, then 0 ≤ p ≤ n.

Q Query the heaviest subsequence. Your program must
output the total weight of the current heaviest subse-
quence followed by a newline, and flush the output.
If the heaviest subsequence is the empty sequence,
output 0.

X Exit. The interaction is finished, and your program
must exit.

The first command will always be an insertion.
Input Output
I 0 1
I 1 2
I 2 -1
Q 3
I 3 4
Q 6
X

Constraints

• There will be at most 100 000 commands.

• −1000 ≤ w ≤ 1000

Additionally, in 40% of the test cases: there will be at
most 5 000 commands.

Additionally, in 20% of the test cases: there will be at
most 500 commands.

Time limit

1 second.

Detailed feedback

Detailed feedback is enabled for this problem.

Scoring

If your interaction with the evaluator is in the wrong for-
mat, you will receive zero. Otherwise, let Q be the number
of queries, and C the number of queries answered cor-
rectly. If Q = C you will receive 10 points; otherwise you
will receive bQ

C × 5c points.

Sat 28 Feb 2009


