
��������� ��	�

�������
� ������������
 � ������������ !"
#�$�������
%

& �(')

*,+�-/.10/2�-43#5 687/9,0�:�;4<�=

OOvveerrvviieeww

Problem Plant Silly Game Ships Composite
Numbers

Author Graham Heinrich Harry Jacques

Program name plant.exe game.exe ships.exe comp.exe

Source name

plant.pas

plant.jav

plant.cpp

game.pas

game.jav

game.cpp

ships.pas

ships.jav

ships.cpp

comp.pas

comp.jav

comp.cpp

Input file plant.in game.in ships.in comp.in

Output files(10) Plant.out game.out ships.out comp.out

Time limit 2 seconds 2 seconds 1 second 2 seconds

Num. of tests 10 10 10 10

Points per test 10 10 10 10

Total points 100 100 100 100

>@?1ACBEDGFIHJBLKGB MON8MOD�P/QGR/N8SOA�TUN8SWVID/XZY[H\Q(]#^
^�_/N�H�`/MOQ8a

b1c/d�e,fOgihUjlk�mon1d�eUp\q/rts�juq1pwv,pwvyx
z q4n�{

|y}�~y�O�O�U~u�,� �/�y���L�8�u���

MMaannuuffaaccttuurriinngg PPllaanntt
Author: Graham Poulter

Introduction
An ailing heavy-vehicle manufacturing plant produces a
number of types of heavy vehicles, each of which has a
profit value per vehicle and takes a certain number of hours
to produce. You have been hired to tell them how many of
each type of vehicle to produce to maximise its profit within
a given time period. Due to short supply of special-purpose
parts, each vehicle type also has a maximum limit for the
number that can be produced.

Unfortunately, the managers of the plant don’t know exactly
how many hours it takes to produce each kind of vehicle,
although they do know the profit value of the finished
product. Each vehicle type has a list of tasks, and each task
takes a certain number of hours to complete. The tasks,
which must be completed before a certain task can begin,
are called the dependencies of that task. Some tasks have no
dependencies and so can begin right away and in parallel.
There are other tasks, which have dependencies but are not
dependencies for any others, and so once all of those tasks
are complete then there cannot be any more tasks
outstanding and the vehicle is finished. Given the durations
and dependencies of the tasks, you have to work out the
Earliest Finish Time (EFT) for each type of vehicle, which
is the shortest amount of time in which one of those vehicles
can be produced.

To prove to the manager that you’re not guessing the EFT’s
you also have to produce for each vehicle type an ordered
list of tasks beginning with one which has no dependencies
and ending with one which has no others depending on it,
with each task in the list being a dependency of the task
immediately to the right of it, such that the sum of the
durations of the tasks in the list is equal to your answer for
the EFT.

Constraints
• Due to lack of floor space, only one vehicle can be

under production at any one time (i.e. you cannot build
two vehicles in parallel), though work on the next
vehicle can begin immediately after the current one is
finished.

• There will never be a cycle of dependencies in the
tasks, e.g. task C depends on B depends A depends on
C.

• The total number of hours, T, available is between 50
and 10000.

• The number of vehicles types, V, is between 1 and 100
• The maximum quantity, M, of a certain vehicle type is

between 1 and 50.
• The profit, P, from making one of a certain vehicle type

is between 1 and 5000.

• The number of tasks, Q, in making a certain vehicle
type is between 1 and 500

• The length in hours, L, for completing a certain task is
between 0 and 10.

• The number of dependencies, D, for each task is
between 0 and Q-1.

• Time limit is 2 seconds.

Input Format (plant.in)
Line 1: Two integers, T and V. T is the total amount of time
available. V is the number of available vehicle types.

There are then V sections representing the vehicles 1.V.
Each section has the following format:

Line 1: Three integers, M, P and Q. M is the maximum
quantity of the vehicle, which can be produced. P is the
profit, which can be made from selling one of the vehicles.
Q is the number of tasks involved in making the vehicle.

Line 2…Q+1: Each line is one of the tasks 1…Q required to
make the vehicle. First on the line are two integers, L and
D. L is the number of hours required to do that particular
task. D is the number dependencies for the task, which is
zero for tasks that can begin right away. Then, on the same
line, are D integers P1…PD each in the range 1…Q
representing those tasks on which the current task depends.

Output Format (plant.out)
Lines 1…2*V: Two lines for each type of vehicle. On the
first line are three integers, PROD, EFT, and LEN. PROD is
the number of that type of vehicle that must be produced in
the time period T to maximise profit. EFT is the Earliest
Finish Time for that type of vehicle. LEN is the number of
tasks in a list of tasks whose sum is the EFT. On the
second line are LEN integers each in the range 1…Q
representing the ordered list of tasks, beginning with a task
which has no dependencies and ending with a task on which
no others depend, and each task depending on the task to the
left of it, such that the sum of the times to complete the list
of tasks equals the EFT.

Scoring
• There are 10 test cases, each worth 10 points.
• Any invalid output automatically scores 0 points for the

case.
• If PROD is greater than M for any vehicle type, the

output is invalid.
• If your list of tasks for an EFT is longer or shorter than

LEN, does not obey dependencies or does not sum to
exactly EFT, the output is invalid.

• If your total production time is greater than T using
your EFT’s then the output is invalid (this is only once
all your task-lists giving those EFT’s are found to be
valid, even if non-optimal). Multiplying PROD and EFT
for each vehicle type and summing find the total
production time.

�1�/���,�O�i�U�l���o�1���U�\�/�t���u�1�w�,�w�y�
� �4���

 y¡�¢y£O¤O¥U¢u¦,§ ¨/©yª�¤L«8¬u­�®

• A score out of 5 for your total profit (worked out by
multiplying PROD and P for each vehicle type and
summing) is calculated from the following ranges,
where percentages are of the optimal profit and the
score is in brackets. 100% of optimal scores 5 points.

(0) 80% (1) 85% (2) 90% (3) 95% (4)
105% (3) 110% (2) 115% (1) 120% (0)

• For each EFT, exactly the same proportional scaling is
done on the optimal EFT. The scores for the EFTs are
then summed and divided by V for a score out of 5.

Sample Input
30 3 Time period 30 hours, there are 3 types of vehicles
7 4 3 Vehicle type 1 has a limit of 7, profit of 4 and 3 tasks
1 0 Task 1 has duration 1 and 0 dependencies
4 1 1 Task 2 has duration 4 and 1 dependency, task 1
3 1 2 Task 3 has duration 3 and 1 dependency, task 2
6 2 4 Vehicle type 2 has a limit of 6, profit of 2, & 4 tasks
3 0 Task 1 has duration 3 and 0 dependencies
1 1 1 Task 2 has duration 1 and 1 dependency, task 1
2 1 1 Task 3 has duration 2 and 1 dependency, task 1
2 2 2 3 Task 4 has duration 2, 2 dependencies, tasks 2 & 3
2 5 1 Vehicle type 3 has a limit of 2, profit of 5 &1 task
5 0 Task 1 has duration 5 and 0 dependencies

Sample Output
2 8 3 Vehicle type 1: produce 2, EFT is 8 hrs, 3 tasks in list
1 2 3 Tasks 1, 2 and 3 (completed in order take 8 hrs)
0 7 3 Vehicle type 2: produce 0, EFT is 7 hrs, 3 tasks in list
1 3 4 Tasks 1, 3 and 4 (completed in order take 7 hrs)
2 5 1 Vehicle type 3: produce 2, EFT is 5 hrs, 1 task in list
1 Task 1 (completed takes 5 hrs)

The total profit is 2*4 + 0*2 + 2*5 = 18 (the optimal profit)
The total production time is 2*8 + 0*7 + 2*5 = 26 hours
(must be <= 30 for this case)

TThhee SSiillllyy GGaammee

AUTHOR: Heinrich du Toit

Description:
A 2-player game is played with a strange board.
The board contains N circles drawn on it.
There is one pawn that is placed in circle number 1.
Between the circles there are lines drawn on the board and
on each line a number is written. The players take turns to
move the pawn to another circle along the line. The player
then collects the points on the line.
When the pawn reach circle N the game ends and the player
with the most points win.

Task
You must write a program to play this game.
Read the board data from the file: game.in and play against
the other player using stdin and stdout.

Input: game.in
line 1: one integer, N
line 2: one integer, R , the number of lines by which the
pawn may move.
the next r lines each contain 3 integers.
 Ai, Bi, Si
Means: The pawn may move from circle A to circle B (not
the other way) and then the player collects S points.

Example
4
4
1 2 4
2 3 3
3 4 4
1 3 5

Constraints
 Ai < Bi
 2 <= N <= 1000
 1 <= R <= 15000
 0 <= Si <= 1000
There will be no more than 1 line between any 2 circles.
You must play against a computer opponent writing your
moves to standard output and reading your opponent's
moves from standard input. You are player one and move
first.
When it is your turn, write out a line containing a single
integer that is the number of the circle to move to. When it
is your opponent's turn, read in a single line that will contain
the circle to which your opponent moved. If you do
something illegal (such as make an illegal move or put
letters into your output) the evaluator will quit.
When the evaluator quits (because of something illegal or
because the game is over) the standard input will close. See
below for how to test for this in the languages available.
When you or the other player prints N, you should quit
immediately. The other program will keep track of score and
write output. Your program must not write an output file.
You will get more points if you win optimally. Winning
optimally is defined as getting as many points ahead of your
opponent as possible. It will always be possible for you to
force a win.

PASCAL:
Use writeln(move) to make a move and readln(move) to
receive a move from the opponent. Do not use the CRT unit
as this may interfere with the redirection of input and output.
You can test whether standard input has been closed (due to
you doing something illegal) by checking eof(input). If you

�1�/���,�O�i�U�l���o�1���U�\�/�t���u�1�w�,�w�y�
� �4���

 y¡�¢y£O¤O¥U¢u¦,§ ¨/©yª�¤L«8¬u­�®

don't do this check, you will get runtime error 106 the next
time you try to readln.

C:
Use printf("%d\n", move) followed by fflush(stdout) to
make a move, and use scanf("%d", &move) to receive a
move. If standard input is closed then the call to scanf will
return EOF.

C++:
Use cout << move << '\n' to make a move, and cin >> move
to receive a move. If standard input has closed then after
executing cin >> move, cin.eof() will be true (and move
might be undefined).

Time
Time limit: 2 seconds.
Only your CPU time is counted; the time taken by the
opponent and the time you spend waiting for the
readln/scanf/cin call to return are not counted. There is also
a 20 second real-time limit to catch programs that try to read
a move when it is their turn to write a move.

Score:
If you win optimally: 100%
If you win but not optimally: 80%
If you draw: 50%
If you loose by less that 10 points: 10%
If you loose, time out or do something illegal: 0%

SShhiippss

Author: Harry Wiggins

Description
There are N towns on both the north and south bank of the
Mississippi river. Each town on the north bank has its
unique friend town on the south bank. No two towns have
the same friend.
Each pair of friend towns would like to have a ship line
connecting them. They applied for permission to the
government. Because it is often foggy on the river the
government decided to prohibit intersection of ship lines (if
two lines intersect there is a high probability of ship crash).
Your task is to write a program to help government officials
decide to which ship lines they should grant permission to
get maximum number of non intersecting ship lines.

Input data
In the first line there are 2 integers M, N separated with
exactly one space, M represents the length of the Mississippi
river bank (10 <= M <= 6000), N represents the number of
towns situated on both south and north riverbanks (1 <= N
<= 5000). On each of the next N lines there are two positive
integers A, B separated with space (A, B <= M),
representing distances of the pair of friend towns from the
western border of the Mississippi river measured along the
riverbanks (A for the town on the north bank, B for the town
on the south bank). There are no two towns on the same
position on the same riverbank.

Output Data
The output file has to contain the maximum possible number
of ship lines satisfying the conditions above.

SHIPS.IN

30 7
22 4
2 6
10 3
15 12
9 8
17 17
4 2

SHIPS.OUT
4

Scoring
You’ll get partial marks if your answer is less than double
the optimal answer. You have 1-second time limit.

�1�/���,�O�i�U�l���o�1���U�\�/�t���u�1�w�,�w�y�
� �4���

 y¡�¢y£O¤O¥U¢u¦,§ ¨/©yª�¤L«8¬u­�®

CCoommppoossiittee NNuummbbeerrss

Author: Jacques Conradie

Description
For a given set of K prime numbers S = {p1, p2, ..., pK},
consider the set of all numbers whose prime factors are a
subset of S. This set contains, for example, p1, p1p2, p1p1,
and p1p2p3 (among others). This is the set of 'Composite
numbers' for the input set S. Note: The number 1 is
explicitly declared not to be a composite number.

Task
Your job is to find the Nth humble number for a given set S.
Long integers (signed 32-bit) will be adequate for all
solutions.

Input
Line 1. Two space separated integers: K and N.
Line 2. K space separated positive integers that comprise

the set S.

Sample Input (file comp.in)
4 19
2 3 5 7

Output
The Nth composite number from set S printed alone on a
line.

Sample Output (file comp.out)
27

Scoring
You will receive 100% for a correct solution and 0
otherwise.

Constraints
1 <= K <=100 and 1 <= N <= 100,000.

