
South African Computer Olympiad
Training Camp 3, 2006

Day 1

Overview

Author Max
Rabkin

Joshua
Yudaken

Keegan
Carruthers-

Smith

Ralf
Kistner

Problem inscript robot stone meeting

Source inscript.c
inscript.cpp
inscript.pas

robot.c
robot.cpp
robot.pas

stone.c
stone.cpp
stone.pas

meeting.c
meeting.cpp
meeting.pas

Input file inscript.in robot.in stone.in meeting.in

Output file inscript.out robot.out stone.out meeting.out

Time limit 2 seconds 1 second 2 seconds 1 second

Number of tests 10 10 10 10

Points per test 10 10 10 10

Total points 100 100 100 100

The maximum total score is 400 points.

South African Computer Olympiad
Training Camp 3, 2006

Day 1

Ancient Inscriptions

Author

Max Rabkin

Introduction

At Oklo, Gabon, there is a large deposit of “enriched”
uranium. It is generally thought that this is purely natu-
ral and coincidental, but some believe that it may be the
remains of an ancient civilisation’s power station. Arche-
ologists working nearby have discovered several inscrip-
tions. They believe that these may have been written by
the power station’s engineers, but need your help to prove
it.

The inscriptions are encrypted using an “alternation
cipher”: the writer would start writing from either the
left or right, and then change direction, always filling in
towards the centre, changing direction an arbitrary num-
ber of times (that number is the “alternation count”, and
may be zero). Since anyone who knows anything keeps
a backup of their data, there are two copies of each in-
scription (usually encoded differently, but with exactly the
same punctuation and capitalisation). It is in decryption
that the archeologists need help.

Task

Write a program that, given the two inscriptions, deter-
mines whether they encode the same message, and if so
finds the sum of the alternation counts which could trans-
form the unencrypted text (“plaintext”) into the respec-
tive encrypted forms.

Example

Consider the plaintext “URANIUM”. It may be encoded
as follows (the dots, arrows and numbers are for clarity,
and are not part of the inscription).

Starting from the left:
1
→
UR.....

Then switching directions:
1
→
UR..

2
←−
INA

Back to left-to-right:
1
→
UR

3
→
UM

2
←−
INA

So “URUMINA” decodes to “URANIUM” with an al-
ternation count of two (since the writer changed direction
twice). If the other inscription was “RANIUMU” (with
alternation count 1), then the sum of alternation counts

atot for the plaintext “URANIUM” is 3. There may be
other possible plaintexts with the same alternation count
sum.

Input (inscript.in)

The input consists of two lines of length N , each contain-
ing one encrypted version of the text. Both strings consist
of upper- and lowercase letters, underscores, full stops and
the digits 0–9.

Sample input

URUMINA
RANIUMU

Output (inscript.out)

The output consists of one line containing one item. If the
two inscriptions could not encode the same plaintext, that
item is the string “INCOMPATIBLE”. Otherwise, the item
is a single non-negative integer, atot = a1 + a2, where a1

and a2 are the alternation counts from the plaintext to
the respective inscriptions. There may be more than one
possible plaintext, in which case the program must output
the minimum atot.

Sample output

3

Constraints

• 1 ≤ N ≤ 400

40% constraints

• 1 ≤ N ≤ 50

Time limit

2 seconds.

Scoring

Correct answers will score 100%; incorrect or incorrectly
formatted answers will score 0%.

Wed 09 Aug 2006

South African Computer Olympiad
Training Camp 3, 2006

Day 1

Robot Run

Author

Joshua Yudaken

Introduction

Dave has a natural love for traffic lights. . . unfortunately
only when they are green, and his life mission has become
avoiding red traffic lights. Unfortunately, Dave has found
himself in a bit of a pickle. He needs to reach the orange
store as quickly as possible without the sight of a single
red traffic light and while dodging obstacles.

Task

Help Dave move from the top left corner of the traffic grid
to the bottom right (where the orange store is located)
without standing on a point from which he can see a red
traffic light. Dave can see all the traffic lights horizontally
or vertically from himself, as long as there are no obstacles
between him and the robot. The traffic lights do not have
a yellow phase and all change from red to green (or vice-
versa) at the same time, every K seconds. “Obstacles”
to Dave’s vision and movement consist of scattered stone
blocks and also the traffic lights themselves. Dave himself
can wait (not move), or move up, down, left, or right. He
must never be on a “forbidden” square, where a square is
forbidden if it is an obstacle, or is an empty square from
which he can see a red traffic light.

Example

Take K = 2 and the map below, where “#” is a stone
block, “R” is a robot starting red and “G” is a robot
starting green. Coordinates are (x, y) where (1, 1) is the
top left corner (this is a flip of the usual (row, column)
coordinates). The following is a diagrammatic represen-
tation of the map at T = 0:

......

......

.R.##.

..G...

Applying the robot visibility rules, we can mark all the
forbidden squares with “#”:

.#....

.#....
#####.
.##...

Every K = 2 time steps, the robots change to the fol-
lowing alternate state of forbidden squares (and change
back to the original K steps later):

..#...

..#...

.####.
######

Optimal solutions take 9 steps for Dave to reach the or-
ange shop. One solution is described below, where “origi-
nal” and “alternate” refer to the two states of the robots.

T = 0 (original): At (1, 1) (starting position). Move
down.

T = 1 (original): Arrive at (1, 2). Move right.
T = 2 (alternate): Arrive at (2, 2) (which is now clear).

Wait.
T = 3 (alternate): Still at (2, 2). Move right.
T = 4 (original): Arrive at (3, 2) (which is now clear).

Move right.
T = 5 (original): Arrive at (4, 2). Move right.
T = 6 (alternate): Arrives at (5, 2). Move right.
T = 7 (alternate): Arrive at (6, 2). Move down.
T = 8 (original): Arrive at (6, 3). Move down.
T = 9 (original): Arrive at (6, 4) (the orange shop).

Dave can now buy his oranges.

Input (robot.in)

The first line of the input contains a five space-separated
integers: W , H, K, S and R (the width, height, robot
timing, number of stone blocks and number of robots re-
spectively). The next S lines contain two space-separated
integers, x and y, representing the horizontal and vertical
position of each stone block. The next R lines contain two
space-separated integers followed by a space and a char-
acter c, representing the horizontal and vertical positions
of a red robot if c is “R” or a green robot if c is “G”.

Sample input

6 4 2 2 2
4 3
5 3
2 3 R
3 4 G

Wed 09 Aug 2006

South African Computer Olympiad
Training Camp 3, 2006

Day 1

Output (robot.out)

A single line with the earliest time at which Dave can
arrive the orange shop or the word “none” if it is not
possible.

Sample output

9

Constraints

• 1 ≤ W,H ≤ 500

• 1 ≤ K ≤ 6

• 0 ≤ S, R ≤ 500

50% constraints

• 0 ≤ R ≤ 25

Time limit

1 second.

Scoring

An optimal answer will score 100%, while a sub-optimal
or invalid answer will score 0%.

Wed 09 Aug 2006

South African Computer Olympiad
Training Camp 3, 2006

Day 1

Stone

Author

Keegan Carruthers-Smith

Introduction

You are on the IT staff for the hit TV show Survivor
XXI: Merida. This week’s challenge is to represent a fixed
length message using black and white stones. The stones
are placed next to each other in a line. The winner is
the contestant who uses the least amount of stones. The
producers of the show want to know what is the least
amount of stones a contestant could use.

Task

You are provided with a histogram of the characters in
the message. (This is a frequency count of each charac-
ter). Due to the nature of the challenge, no character’s
representation in black and white stones can be a prefix
of another character’s representation. You need to output
what the least amount of stones a contestant could use.

Example

The message “an aardvark” would have a histogram of:
(space) — 1
a — 3
n — 1
r — 2
d — 1
v — 1
k — 1

A possible encoding would be (1 is a black stone and 0
is a white stone):
(space) — 1011
a — 11
n — 1010
r — 01
d — 100
v — 000
k — 001

This will make the layout of the stones:
111010101111110110000011001 This gives a length
of 27, which is minimal.

Input (stone.in)

The first line contains the number of characters in the
histogram, N . The next N lines each contain a single
integer, Fi, which represents the frequency of a character.

Sample input

7
3
1
1
2
1
1
1

Output (stone.out)

The output file contains a single integer, M , the minimum
length of the encoded message.

Sample output

27

Constraints

• 1 ≤ N ≤ 200000 = 2× 105

• 1 ≤ Fi ≤ 2000000000 = 2× 109

60% constraints

• 1 ≤ N ≤ 2000

• 1 ≤ Fi ≤ 10000

40% constraints

• 1 ≤ N ≤ 10

• 1 ≤ Fi ≤ 600

Time limit

2 seconds.

Scoring

You will score 100% for a test case if you output the mini-
mum amount of stones required, otherwise you will receive
0.

Wed 09 Aug 2006

South African Computer Olympiad
Training Camp 3, 2006

Day 1

Meeting

Author

Ralf Kistner

Introduction

A group of people are going to a meeting. Every person in
the group, apart from the leader, has exactly one superior,
which is also in the group. The leader has no superiors.
Whenever two people with the same superior arrive at the
meeting (not necessarily directly after each other), their
superior has to arrive directly afterwards (after the second
one). The superior may arrive earlier, but not later.

Task

Given a list of the people and their superiors, find the
maximum number of people that can arrive before the
leader.

Example

There are 5 people going to the meeting, numbered 0 to 4.
Person 0 is the leader. 1, 2 and 3 have 0 as their superior,
and 4 has person 2 as his superior.

A maximum of 2 people from persons 1, 2 and 3 can
arrive before the leader. Person 4 can arrive before any
one of them. This gives the maximum number of people
that can arrive before the leader as 3. For example: first
person 1, 4 and 2 arrive. Then the leader has to arrive
directly after 4, and then finally 3 arrives. There are many
other orderings that they can arrive in, but they will all
give a maximum of 3 people that arrive before the leader.

Input (meeting.in)

The first line of the file contains one integer, N , the num-
ber of people in the group. The next N − 1 lines each
contains the superior of a person: the first line will con-
tain the superior of person 1, the second line of person 2,
etc. The leader is person 0.

Sample input

5
0
0
0
2

Output (meeting.out)

The first line of the output contains one integer, the max-
imum number of people that can arrive before the leader.

Sample output

3

Constraints

• 1 ≤ N ≤ 20000

• There will be no cycles in the input

50% constraints

• 1 ≤ N ≤ 50

Time limit

1 second.

Scoring

100% for a correct answer, 0% for an incorrect answer.

Wed 09 Aug 2006

