
South African Computer Olympiad
Final round

Day 1

Overview

Author Marco Gallotta Bruce Merry Graham
Poulter

Problem honey bursary babylon

Source honey.pas
honey.c

honey.cpp
honey.java

bursary.pas
bursary.c

bursary.cpp
bursary.java

babylon.pas
babylon.c

babylon.cpp
babylon.java

Input file honey.in bursary.in babylon.in

Output file honey.out bursary.out babylon.out

Time limit 2 seconds 1 second 5 seconds

Number of tests 10 10 10

Points per test 10 10 10

Total points 100 100 100

The maximum total score is 300 points.

Sat 28 Aug 2004 Cape Town



South African Computer Olympiad
Final round

Day 1

Honeycomb

Author

Marco Gallotta

Introduction

Figure 1 shows a honeycomb of numbers. A route starts
from some node in the uppermost row and ends in some
node in the lowest row. From a node, the route can con-
tinue only diagonally down to the left or down to the right.
When creating a route through the honeycomb, you are
allowed to make at most one swap of two numbers on at
most one horizontal row of the honeycomb. Swapping es-
sentially means that in one chosen row you are allowed to
place the greatest number of that row to any position on
the same row.

Task

Your task is to write a program that calculates the highest
sum of numbers on any route using the ability of swapping
two numbers on a chosen row.

Example

For the honeycomb in the diagram above, the highest sum
(3 + 2 + 8 + 5 + 4 = 22) is shaded in gray. Notice that the
number 5 on the fourth row (from the top) is swapped to
the 3rd position (from the left) on that row.

Input (honey.in)

The first line contains a single integer N , the side length of
the honeycomb. The next 2N − 1 lines give the numbers
(space separated) for each row of the honeycomb, from
top to bottom and left to right.

Sample input

3
1 2 3
3 2 2 1
4 2 8 0 3
5 3 1 2
3 1 4

Output (honey.out)

The only line of the output file should contain a single
integer, the highest sum, calculated as described above.

Sample output

22

Constraints

• 1 ≤ N ≤ 500

• 0 ≤ each node ≤ 1000

50% constraints

• 1 ≤ N ≤ 15

• 0 ≤ each node ≤ 200

Time limit

2 seconds.

Scoring

You will score 0% for an incorrect answer and 100% for a
correct answer.

Figure 1: Honeycomb

Sat 28 Aug 2004 Cape Town



South African Computer Olympiad
Final round

Day 1

Bursary

Author

Bruce Merry

Introduction

Fred the manic store-keeper has decided to go to univer-
sity to study for a marketing degree, so that he can im-
prove sales in his shop. He has been offered numerous bur-
saries, each of which limits how much he can receive from
other bursaries. Each also limits the amount of time he
can spend on part-time work (running the shop), and thus
how much extra money he can make. Help him to decide
which bursaries he should accept to obtain the maximum
amount of money.

Task

Each bursary has the following properties: the value vi,
the maximum total value mi and the maximum amount
that Fred can make doing part-time work, ti. These values
are all expressed in whole numbers of rands.

The amount of money that Fred will receive is com-
puted as follows. First, he adds up vi for each bursary he
accepts, to obtain a total value V . The maximum total M
is the minimum of mi for each bursary he accepts. Fred
will actually receive the minimum of V and M from the
bursaries. Finally, he will make an additional T from part-
time work, where T is the minimum ti for the bursaries
he accepts.

To summarise:

V =
∑

vi

M = min{mi}
T = min{ti}

total = min{V,M}+ T.

Fred must accept at least one bursary. This ensures
that T is always well defined.

Example

Consider the bursaries listed in table 1.
If Fred takes only one bursary, he will make at most

R70 (50+20 or 60+10). If he takes all three, he makes a
total of R75 (65 + 10). But if he takes the first and third,
he will make R85 (65 + 20).

i vi mi ti
1 50 80 20
2 60 70 10
3 30 65 20

Table 1: Example bursaries

Input (bursary.in)

The first line of input contains the N , the number of bur-
saries on offer. The following N lines each describe a
bursary. Each line contains the three integers vi, mi and
ti, separated by single spaces.

Sample input

3
50 80 20
60 70 10
30 65 20

Output (bursary.out)

The first line of output must contain K, the number of
bursaries that Fred should accept to obtain the maximum
amount of money. The following K lines list the numbers
of the bursaries that Fred will accept, one per line. The
bursaries are numbered from 1 to N , in the order they
appear in the input file. The bursaries may be listed in
any order.

If there is more than one way in which Fred can obtain
the maximum, you are only required to output one.

Sample output

2
1
3

Constraints

• 1 ≤ N ≤ 2000

• For each bursary i:

– 1 ≤ vi ≤ mi ≤ 100000

– 0 ≤ ti ≤ 100000

50% constraints

• 1 ≤ N ≤ 20

• Other constraints are as above.

Sat 28 Aug 2004 Cape Town



South African Computer Olympiad
Final round

Day 1

Time limit

1 second.

Scoring

If your output file is invalid (for example, you accept a
bursary twice, or have negative numbers) you will score
0. If you obtain the maximum amount of money, you will
score 100%. Otherwise, you will score P

Q × 50% rounded
down, where P is your total and Q is the optimal total.

Sat 28 Aug 2004 Cape Town



South African Computer Olympiad
Final round

Day 1

Tower of Babylon

Author

Graham Poulter

Introduction

The Babylonians are famous for the Hanging Gardens and
the Tower of Babylon. According to legend, the tower was
meant to reach the sky, but the project failed because of
a confusion of language imposed from somewhat higher.
For the 2638th anniversary a model of the tower is being
rebuilt from large precast blocks.

Task

n different types of blocks are available, each in unlimited
supply. Each type is characterised by its three dimensions,
x, y and z.

The blocks are to be stacked one upon eachother so that
the resulting tower is as high as possible. Of course the
blocks can be rotated as desired before stacking. However,
for reasons of stability, a block can only be stacked upon
another if both of its baselines are shorter, as illustrated
in Figure 2.

Example

Suppose there is only one block type, with dimensions
(5,4,3). You can place the first block any way you wish.

Supposing you place the first block with base dimen-
sions of 5× 4 and height 3, then you can place the second
block using base dimension 4× 3 and height 5.

However, the second block could not have had a base of
3× 4, 5× 3 or 3× 5, because then one of the edges would
be as long or longer as corresponding one below it.

Input (babylon.in)

The number of types of blocks n is located in the first line
of the input file. On the subsequent n lines the dimensions
x, y and z of each type of block are given.

Sample input

5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27

Output (babylon.out)

Your program should output the height h of the highest
possible tower.

Sample output

342

Constraints

• 1 ≤ n ≤ 30

• 1 ≤ x, y, z ≤ 10000

• 1 ≤ h ≤ 1000000

50% constraints

• 1 ≤ n ≤ 10

Time limit

5 seconds.

Scoring

You receive 10 points for a correct answer, and 0 points
for an incorrect answer.

Figure 2: Tower of Babylon

Sat 28 Aug 2004 Cape Town


