

(search)

The problem

Given a grid of letters and a list of words:
 Find the words in the grid (either vertically,

horizontally or diagonally)
Call all the places where we find words placements

 Choose the subset of these placements such that:
No two placements overlap
The score of the subset of placements is as large as

possible
 Score is equal to the number of placements + the length of

all the placements

Example

OVCME

MLRPP

ALLLI

ERWEU

MFKHH• HELLO
• ME
• ALL
• I
• HELP
• WE

The greedy approach

The scoring formula
favoured longer
placements
 Use the longest legal

placement, and
repeat until there are
no more legal
placements

OVCME

MLRPP

ALLLI

ERWEU

MFKHH

OVCME

MLRPP

ALLLI

ERWEU

MFKHH

I have a cunning plan…

Turn the set of placements into a graph
 Create a node for each placement
 Create an edge between nodes if their

placements overlap

Converting to a graph

OVCME

MLRPP

ALLLI

ERWEU

MFKHH

HELLO (6)

HELP (5)

ME (3)ME (3)

ALL (4)

I (2)

WE (3)

Using the graph

Use every node that is not connected to
anything else
 These nodes correspond to placements that do

not overlap with any other placements
We get them for free! :-)

For the remaining nodes, split them up into
what are called connected components
 Each connected component corresponds to a

smaller sub-problem

Solving within each connected
component

 Imagine that we highlight nodes in the graph to indicate that we
wish to use those nodes’ placements

 Our goal is then to highlight a subset of highlighted nodes such
that:
 No two highlighted nodes have an edge connecting them
 The total score of the highlighted nodes is as large as

possible
 If each node had a score of 1, then this is known as the

maximum independent set problem (which is NP-complete)

HELLO (6)

HELP (5)
ALL (4)

WE (3)

HELLO (6)

ALL (4)
HELP (5)

Solving within each connected
component (2)
Brute force

 Give your placements some order
 For the first placement, you try two options:

either you use the placement, or you don’t
For the second placement:

 If it conflicts with the first one (their nodes are
connected by an edge), then you can’t use it —
move onto the third placement

 No conflict, so again you have two options: use it or
lose it! Try each, and then…

For the third placement…

Carl’s quick intro to recursion

 Typing out all those different options is going to take a long
time. There must be an easier way…

Function solve(n)

if can_use(n)
use(n)
solve(n+1)

don’t_use(n)
solve(n+1)

if n = end
calculate_score()
if score > best_score

update_best_score()
return

Some other thoughts

Look for chains
 E.g. A connected to B connected to C connected

to D connected to…
 These can be solved using dynamic programming

(DP)
Look for loops

 These can be dealt with in a similar way to chains,
using DP

Look for trees
 Trees allow you to break up the problem into

smaller problems, by considering each branch
individually

Or just do it by hand ;-)

Questions, comments, death threats,
large sums of money? ;-P

