SACO 2008 Day 2 Solutions

SACO Scientific Committee

1 Factor

Notice that the numbers ¢ and 7 are the roots of ax? + bx + c¢. They can be
found using the quadratic formula

—b—+VA
q=—F
2a

and
—b+ VA
,r = )
2b

where A = b — 4ac. To find p, multiply out the factorised form:

plx — q)(x —r) = pa® — p(q+ )z + pgr.

Comparing this to the original quadratic polynomial az? + bz + ¢ we see that
p=a.

The tricky part of the problem was to handle the cases where the quadratic
polynomial couldn’t be factorised. This can happen in three ways:

The first case is when A < 0. In this case, there are no real roots (you can’t
take the square root of a negative number) and so the quadratic polynomial
cannot be factorised.

The second case is when A is not a perfect square. In this case VA is an
irrational number (e.g. v/2 = 1.141---) and this makes the roots irrational.
Since g and r are required to be integers, the quadratic polynomial cannot be
factorised. The easiest way to check whether A is a perfect square or not is to
take the square root, cast it to an integer and then square it to see if you get
back the original A.

The final case is when the numerator in the quadratic formula is not a
multiple of 2a. In this case the roots are not integers and so, again, the quadratic
polynomial cannot be factorised.

2 Popular Room

Poproom required us to find the most common element within a list (the mode).
The problem’s brute force solution of going through the list and incrementing a
count for each element has its drawbacks, mainly in terms of wasting memory



or needing to do inefficient lookups, depending on the data structure used to
represent the rooms list. This method should get 50% of the marks.

Our correct solution was to sort the list in place, using only a constant
amount of additional memory, and then to pass through the list, keeping a
running count of only the current element that is being processed, as well as
the best current solution. This would only require a single pass, scoring the full
100% of the marks.

3 Hotel

Hotel required you to find the maximum number of guests in the hotel at a time.
A variety of brute force solutions exist. The one we thought most plausible was
to, for each point in time, to check if each guest was in the hotel at that time
and if so, increment some counter, keeping a tab of when the most people were
there. This is slow however, since it has order O(N?) due to the lookup taking
linear time, and there being N guests. The optimal solution was to make a
single list of arrivals and departures and the time that it occurs, sort this list by
time, and then simulate the hotel for all the guests. This is only O(N), getting
100%.

4 Containment

It is very easy to get an incorrect solution for this problem, being mislead into
believing that a greedy solution is correct. A typical greedy solution places the
first block starting at the first magnet and loops around the ring continuously
find the next uncovered magnet and adding a new block to cover that and any
magnets in the next K — 2 locations.

To see why this is wrong, just try it on the sample case (o represents a
magnet, - represents a blank; K = 2):

0---0--0--0

The greedy fails on this by using three magnets. With a little bit of effort we
can get a “more correct” solution that will get the correct answer for many more
test cases. One idea is to search for the location for which a block would cover
the most magnets and greedily place blocks from there the above algorithm.
However, this is still incorrect.

A brute force solution which loops through all possible permutations of the
block locations, finding the permutation using the least blocks is O(N!) and
expected to score 30%. It should be clear that this solution is correct.

With a little insight into the problem we can improve on this solution by
noticing that many permutations use overlapping blocks. We can alter the
incorrect greedy solution as follows. Instead of pre-selecting a starting position
for the first block, loop through all possible starting positions and assign the
blocks greedily. This solution is O(NR) and is expected to get 70%.



To get the full 100% you have to take one more step. Notice that it is not
worth starting at a position without any magnets, instead starting only at the
magnet positions. This is O(NK).

5 Lasers

Lasers is a competitive task — the idea is to find a better solution than your
competitors. For this reason, we chose a problem for which there is no efficient
optimal solution known. The approach is to use heuristics. This solution will
describe a number of possible heuristics that can be used to improve the estimate
for the lowest total cost, but it is by no means exhaustive. There are many other
tricks that can be used, but of course the time remaining in the contest is the
constraint on how many you can implement.

The first approach is to use a greedy algorithm. A good starting greedy
algorithm works by greedily assigning merchandise that is the farthest away
from its closest robot. In other words, for each item of merchandise, sort all
the robots by the distance that they are from that item. Then you know the
closest robot to each item. Call this distance d;, where i indexes the items. Find
the maximum of the values d;, and give the corresponding robot a laser that
can just scan that item. Now repeat this, making sure that when you find the
maximum, you do not consider items that are already being scanned. At the
end, you should have given the robots lasers such that all the items are scanned.
This solution is roughly O(M N log N), and so is fast enough to run within the
contest time.

Although this is a valid solution and it can be submitted, there are opti-
mizations to be made. One optimization is, after the greedy algorithm above
has been done, to iterate through each robot and consider the outer-most item
that it is scanning. Then run through all the other robots and check if the total
cost is reduced by making that robot scan the item instead. This optimization
does not influence the overall complexity.

What has been described so far is a good start, and should ensure that you
do well against competitors. To make sure you have the best solution, however,
it helps to investigate some of the test cases:

o (Cuases 1 and 2:

These are small enough to do by hand or to brute force and get the optimal
answer. Note that coding and debugging a brute force algorithm might
take more time than it’s worth, so it’s probably better to run the greedy
algorithm described and tweak the results by hand.

o Cases 3, 4, 5, 6:

These cases consist of randomly generated points, but are far too large
to draw and work out by hand, or for a brute force algorithm. The best
approach here would be to rely on the greedy algorithm described above.



e (ase 7: This case has a lot of randomly scattered robots, each with a
number of items at an equal distance around them. This means that the
items are arranged in circles, and at the center of each circle is a robot.
Not many of the circles overlap. The input data is in a random order to
make it hard to see this pattern when investigating the file by hand.

The greedy algorithm does well in this case, but there is a better solution.
The idea is to use a clustering algorithm, such as the k-means clustering
algorithm. A clustering algorithm takes as its input a set of points in the
plane and tries to assign each point to a cluster. The k-means algorithm
does this by first dividing the points into arbitrary clusters. Then, calcu-
late the centroid of each cluster. A centroid is the point with the cluster’s
mean z-value and its mean y-value. For each centroid, find all the points
that are closer to that centroid than to any other cluster’s centroid. This
set of points will form the new cluster. This process can be repeated with
the new set of clusters. Repeating enough times will yield a good estimate
for the clusters that the points form.

For this test case, then, a good approach is to run the clustering algorithm
on the items of merchandise. Then, for each cluster, find a single robot
that can scan the entire cluster.

e Cases 8, 9:

The greedy algorithm works by assigning each item to the nearest robot.
This does not work so well if you have a large cluster of items, with one
robot in the center and a number of robots around the edge of the cluster.
The better solution would be to make the central robot scan the entire
cluster, while the robots around the edges scan nothing. Cases 8 and 9
each have a large number of such clusters.

The solution is similar to the one for test case 7. A clustering algorithm
can be used to detect clusters of items. Afterwards assign one robot to
scan each cluster entirely. Loop through all robots and see which one
scans the entire cluster with the lowest cost. All other robots do not scan
anything. As usual, modifications can be made to this algorithm to make
it work slightly better.

o (Case 10:

The greedy algorithm gets an answer for this case that is particularly far
from the optimal. Investigating the case by hand will reveal that all the
robots and items of merchandise lie on a straight line. On the line, the
robots and items are positioned in the following repeating pattern:

Here an z is a robot and an o is an item. The greedy algorithm would
make each robot scan the two items nearest to it. A much better solution



is for every second robot to scan the four items nearest to it, and the
rest to scan nothing. Once you see this, it is quick to write a program to
generate the output.

6 Disgusting Banquet

6.1 Brute force

The simplest solution is to generate all 2V possible eating/bathroom schedules,
and counting the number of bathroom visits and total tastiness for each schedule.
This is very slow—it would take more than a 10'°°° years to solve the largest
test run—and it should score 30%.

6.1.1 Compression

A little bit of cunning allows one to improve this solution slightly without much
more work. It is fairly easy to see that one will never go to the bathroom or
leave the bathroom between two positive or two negative courses (it’s always
better to postpone in these cases, and get more tasty courses or skip more nasty
ones). Thus one can merge adjacent courses of the same sign, to reduce the
problem size (in some cases).

Combining this with the brute force algorithm should score 40%.

6.2 Dynamic programming

A much better solution is to use 2-dimensional dynamic programming. The first
dimension is the number of courses, and the other is the remaining number of
bathrooms visits allowed. This runs in O(NK) time, and should get 60%.

The trick of compression works here too, to get around 70%.

6.3 Greedy

The optimal solution (that we know of) is a greedy one. First, we compress the
input into intervals of positive and negative courses. Then, as long there are too
many bathroom visits, we find the interval that makes the least difference to
the total tastiness (i.e., the one with the smallest absolute value) and merge it
with its two neighbours. This reduces the number of bathroom visits by one: if
it was positive and its two neighbours were negative, we now have one negative
interval; otherwise it was negative and its neighbours were positive, and we now
have one positive interval.

This can be implemented by keeping the intervals in a list (or array, or
linked list). However, a much better solution is to store the intervals in a data
structure which allows one to find the interval with the smallest absolute value
in sublinear time. Either a heap or a balanced binary tree allow O(log N) access
to the smallest element, and thus the total is around O(N log N). This solution
should score 100%.



