
Eulerian toursEulerian tours
Eulerian tours

What is eulerian circuits
and paths and how to find it

3rd training camp 2008
Schalk-Willem Krüger

2

Eulerian toursEulerian tours
Paths and circuits

 Hamiltonian Circuit:
Starts at a vertex, passes through every vertex
once, and returns to the starting vertex

 Eulerian Path:
Go through every edge once – starts and ends
on different vertex

 Eulerian Circuit:
Go through every edge once – starts and ends
on same vertex

3

Eulerian toursEulerian tours
Sample problem

 Given a collection of cities, along with the flights
between those cities, determine if there is a
sequence of flights such that you take every
flight exactly once, and end up at the place you
started.

 This is equivalent to finding a Eulerian circuit in
a directed graph. The cities is the vertices and
the flight the edges.

4

Eulerian toursEulerian tours
Euler Paths and Circuit algorithms

 At least one Eulerian circuit exists in a graph with
no vertices of odd degree

 NO Eulerian circuit but at least one Eulerian path
exists in a graph with 2 vertices of odd degree

 NO Eulerian circuit exists in a graph with more
than two vertices of odd degree

 Eulerian paths and circuits only exists at connected
graphs

This graph can't have
an Eulerian path

This graph can have
an Eulerian path

5

Eulerian toursEulerian tours
The algorithm

 Pick a starting node and recurse on that node.
At each step:
 If the node has no neighbours, append the node to

the circuit and return.
 If the node has a neighbour, make a list of the

neighbours and process them (which includes
deleting them from the list of nodes on which to
work) until the node has no more neighbors

 To process a node, delete the edge between the
current node and its neighbor, recurse on the
neighbour, and postpend the current node to the
circuit.

6

Eulerian toursEulerian tours
The algorithm - pseodocode

 find_circuit(node i)
 if node i has no neighbors then
 circuit(circuitpos) = node i
 circuitpos = circuitpos + 1
 else
 while (node i has neighbors)
 pick a random neighbor node j of node i
 delete_edges (node j, node i)
 find_circuit (node j)
 circuit(circuitpos) = node i
 circuitpos = circuitpos + 1

Find node with odd degree and run find_circuit with it.

Runtime: If you store in adjacency list form: O(m + n)
m = number of edges
n = number of nodes

Use a stack for larger graphs

7

Eulerian toursEulerian tours
Sample run

2

4

5 1

7

6

3

Stack:
Can be runtime stack of recursive
function

Current location: current node

Circuit:
Path of Eulerian circuit found so
far

● Find eulerian circuit

8

Eulerian toursEulerian tours
Sample run

2

4

5 1

7

6

3

Stack:

Current location:

Circuit:

1

● Select node to begin with: Node 1
● Process first neigbour of node 1: Node 4

9

Eulerian toursEulerian tours
Sample run

2

4

5 1

7

6

3

Stack:

Current location:

Circuit:

1

● Process node 4 – neigbour of node 1
● Delete edge between node 4 and node 1
● Process first neigbour of node 4: Node 2

4

10

Eulerian toursEulerian tours
Sample run

2

4

5 1

7

6

3

Stack:

Current location:

Circuit:

1

● Process node 2 – neigbour of node 4
● Delete edge between node 2 and node 4
● Process first neigbour of node 2: Node 5

4

2

11

Eulerian toursEulerian tours
Sample run

2

4

5 1

7

6

3

Stack:

Current location:

Circuit:

1

● Process node 5 – neigbour of node 2
● Delete edge between node 5 and node 2
● Process first neigbour of node 5: Node 1

4 2

5

12

Eulerian toursEulerian tours
Sample run

2

4

5 1

7

6

3

Stack:

Current location:

Circuit:

1

● Process node 1 – neigbour of node 5
● Delete edge between node 1 and node 5
● Node 1 has no more neighbours (and edges)
● Append node to circuit

4 2

1

5

13

Eulerian toursEulerian tours
Sample run

2

4

5 1

7

6

3

Stack:

Current location:

Circuit:

1

● Append node 1 to circuit
● Go back to node 5 – last one on stack
● Process second neigbour of node 5: Node 6

4 2

1

5

14

Eulerian toursEulerian tours
Sample run

2

4

5 1

7

6

3

Stack:

Current location:

Circuit:

1

● Process node 6 – neigbour of node 5
● Delete edge between node 6 and node 5
● Process first neigbour of node 6: Node 2

4 2

1

5

6

15

Eulerian toursEulerian tours
Sample run

2

4

5 1

7

6

3

Stack:

Current location:

Circuit:

1

● Process node 2 – neigbour of node 6
● Delete edge between node 2 and node 6
● Process first neigbour of node 2: Node 7

4 2

1

5 6

2

16

Eulerian toursEulerian tours
Sample run

2

4

5 1

7

6

3

Stack:

Current location:

Circuit:

1

● Process node 7 – neigbour of node 2
● Delete edge between node 7 and node 2
● Process first neigbour of node 7: Node 3

4 2

1

5 6

7

2

17

Eulerian toursEulerian tours
Sample run

2

4

5 1

7

6

3

Stack:

Current location:

Circuit:

1

● Process node 3 – neigbour of node 7
● Delete edge between node 3 and node 7
● Process first neigbour of node 3: Node 4

4 2

1

5 6

3

2 7

18

Eulerian toursEulerian tours
Sample run

2

4

5 1

7

6

3

Stack:

Current location:

Circuit:

1

● Process node 4 – neigbour of node 3
● Delete edge between node 4 and node 3
● Process first neigbour of node 4: Node 6

4 2

1

5 6

4

2 7

3

19

Eulerian toursEulerian tours
Sample run

2

4

5 1

7

6

3

Stack:

Current location:

Circuit:

1

● Process node 6 – neigbour of node 4
● Delete edge between node 6 and node 4
● Process first neigbour of node 6: Node 7

4 2

1

5 6

6

2 7

3

6

4

20

Eulerian toursEulerian tours
Sample run

2

4

5 1

7

6

3

Stack:

Current location:

Circuit:

1

● Process node 7 – neigbour of node 6
● Delete edge between node 7 and node 6
● Process first neigbour of node 7: Node 5

4 2

1

5 6

6

2 7

3

7

64

21

Eulerian toursEulerian tours
Sample run

2

4

5 1

7

6

3

Stack:

Current location:

Circuit:

1

● Process node 5 – neigbour of node 7
● Delete edge between node 5 and node 7
● Node 5 has no more neighbours (and edges)
● Append node to circuit

4 2

1

5 6

6

2 7

3

5

6 74

22

Eulerian toursEulerian tours
Sample run

2

4

5 1

7

6

3

Stack:

Current location:

Circuit:

1

● Append node 5 to circuit
● Go back to node 7 – last one on stack
● Node 7 has no more neighbours (and edges)
● Append node to circuit

4 2

1

5 6

6

2 7

3

7

6

5

4

23

Eulerian toursEulerian tours
Sample run

2

4

5 1

7

6

3

Stack:

Current location:

Circuit:

1

● Append node 7 to circuit
● Go back to node 6 – last one on stack
● Node 6 has no more neighbours (and edges)
● Append node to circuit

4 2

1

5 6

6

2 7

3

6

75

4

24

Eulerian toursEulerian tours
Sample run

2

4

5 1

7

6

3

Stack:

Current location:

Circuit:

1

● Append node 6 to circuit
● Go back to node 4 – last one on stack
● Node 4 has no more neighbours (and edges)
● Append node to circuit

4 2

1

5 6

6

2 7

3

4

75 6

25

Eulerian toursEulerian tours
Sample run

2

4

5 1

7

6

3

Stack:

Current location:

Circuit:

1

● Append node 4 to circuit
● Go back to node 3 – last one on stack
● Node 3 has no more neighbours (and edges)
● Append node to circuit

4 2

1

5 6

6

2 7

3

75 6 4

26

Eulerian toursEulerian tours
Sample run

2

4

5 1

7

6

3

Stack:

Current location:

Circuit:

1

● Append node 3 to circuit
● Go back to node 7 – last one on stack
● Node 7 has no more neighbours (and edges)
● Append node to circuit

4 2

1

5 6

6

2

7

75 6 4 3

27

Eulerian toursEulerian tours
Sample run

2

4

5 1

7

6

3

Stack:

Current location:

Circuit:

1

● Append node 7 to circuit
● Go back to node 2 – last one on stack
● Node 2 has no more neighbours (and edges)
● Append node to circuit

4 2

1

5 6

62

75 6 4 3 7

28

Eulerian toursEulerian tours
Sample run

2

4

5 1

7

6

3

Stack:

Current location:

Circuit:

1

● Append node 2 to circuit
● Go back to node 6 – last one on stack
● Node 6 has no more neighbours (and edges)
● Append node to circuit

4 2

1

5

66

75 6 4 3 7

2

29

Eulerian toursEulerian tours
Sample run

2

4

5 1

7

6

3

Stack:

Current location:

Circuit:

1

● Append node 6 to circuit
● Go back to node 5 – last one on stack
● Node 5 has no more neighbours (and edges)
● Append node to circuit

4 2

1

65

75 6 4 3 7

2 6

30

Eulerian toursEulerian tours
Sample run

2

4

5 1

7

6

3

Stack:

Current location:

Circuit:

1

● Append node 5 to circuit
● Go back to node 2 – last one on stack
● Node 2 has no more neighbours (and edges)
● Append node to circuit

4

1

62

75 6 4 3 7

2 6 5

31

Eulerian toursEulerian tours
Sample run

2

4

5 1

7

6

3

Stack:

Current location:

Circuit:

1

● Append node 2 to circuit
● Go back to node 4 – last one on stack
● Node 4 has no more neighbours (and edges)
● Append node to circuit

1

4

75 6 4 3 7

2 6 5 2

32

Eulerian toursEulerian tours
Sample run

2

4

5 1

7

6

3

Stack:

Current location:

Circuit:

● Append node 4 to circuit
● Go back to node 1 – last one on stack
● Node 1 has no more neighbours (and edges)
● Append node to circuit

1

1

75 6 4 3 7

2 6 5 2 4

33

Eulerian toursEulerian tours
Sample run

2

4

5 1

7

6

3

Stack:

Current location:

Circuit:

● Append node 1 to curcuit
● Nothing on stack left
● Finished!

1

1

75 6 4 3 7

2 6 5 2 4

34

Eulerian toursEulerian tours
Extensions

 Multiple edges between nodes can be handled
by the exact same algorithm.

 Self-loops can be handled by the exact same
algorithm as well, if self-loops are considered to
add 2 (one in and one out) to the degree of a
node.

35

Eulerian toursEulerian tours
Extensions

 A directed graph has a Eulerian circuit if it is
strongly connected (except for nodes with both
in-degree and out-degree of 0) and the
indegree of each node equals its outdegree.
The algorithm is exactly the same, except that
because of the way this code finds the cycle,
you must traverse arcs in reverse order.

 Finding a Eulerian path in a directed graph is
harder.

36

Eulerian toursEulerian tours
The end

THE END

Any questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

