
Balanced Binary Search Trees
Ralph McDougall

9 February 2019

What is a BBST?

• In graph theory, a tree is a connected, undirected graph that does not
contain any cycles

• A binary tree is a tree with one “root” node and where each node has
at most two “child” nodes

• A binary search tree is a binary tree where each node is assigned
some value and the property holds that for each node V, all nodes in
the left subtree of V have a value less than that of V and all nodes in
the right subtree of V have a value greater than that of V

• A balanced binary search tree is a binary search tree where all leaf
nodes are as close as possible to the root

Why is a binary search tree useful?

• If you want to query whether a given value is in the tree, you can
easily find where it would be if it were in the tree

• If the value A is less than the value of some node V, then you know
that A must lie in the left subtree of V and vice versa

• This makes querying whether or not a value is in a dataset
significantly faster than naively checking every value in the dataset

• Since one would expect the maximum height of the tree to be logN
where N is the number of nodes present, BSTs allow for O(logN)
queries

Why is a balanced binary search tree useful?

• Optimal BSTs are efficient because of the property that their height is
logN

• However, it is not guaranteed that the height is always logN. If new
values are inserted into the tree, one would add them as children of
some leaf nodes

• This can lead to the height of the tree becoming very large and thus
reducing the runtime to O(N)

• A balanced binary search tree introduces extra conditions that must
be satisfied at all times when adding values to ensure that the height
stays as small as possible

Tree rotations

• In order to restructure the tree, BBSTs use “tree rotations”

Tree Rotations (continued)

• Tree rotations help to shorten the maximum distance from the root to
a leaf node

• Different BBSTs use different heuristics to determine where tree
rotations should take place

Types of BBSTs

• AVL tree

• Splay tree

• Red-Black tree

AVL Tree

• An AVL Tree maintains the property that the difference between a
node’s left subtree height and right subtree height is at most 1

• This means that the AVL tree always has as small of a height as
possible

• Since all queries are worst case O(h) where h is the height of the tree,
AVL trees allow for guaranteed O(logN) queries

AVL Tree (continued)

• AVL Insertions:
o Insert a node like you would for a normal BST

oWalk from the leaf node to the root

o Suppose the nodes visited are V1, V2, V3, …, Vk in that order

o If Vi does not satisfy the AVL property anymore, perform some tree rotations
with Vi, Vi - 1 and Vi - 2

o There are 4 cases to consider that affect what tree rotations should be
performed (left-left, left-right, right-left, right-right)

AVL Tree (continued some more)

• Deletion:
• If you want to remove a node from the tree, perform a standard BST deletion

• Walk up from where the deleted node was to the root and perform
rebalancing in the same manner as was done for insertion

AVL Tree Performance

• Queries are guaranteed to be O(logN)

• Insertions are guaranteed to be O(logN)

• Deletions are guaranteed to be O(logN)

• There can be quite a large constant overhead as a lot of rotations may
need to be performed during insertion and deletion

• An AVL Tree is thus not the ideal choice if there are a lot more
insertions and deletions than queries

Splay Tree

• A splay tree utilises the 80-20 rule

• 80% of the queries are to 20% of the elements in a set in a lot of
cases

• Thus, splay trees aim to keep the most recently queried values close
to the root

Splay Trees 2: Electric Boogaloo

• Querying a splay tree is initially identical to querying a normal BST

• Once the query is completed, tree rotations are performed repeatedly
until the last node visited is the new root node

Splay Tree review

• Query is O(logN) (albeit with a fairly large constant)

• Insertion and deletion are O(logN) too

• Splay trees are very useful because they are faster than Red-Black
trees and AVL Trees in most modern situations

• Splay trees are used in the gcc compiler, the implementation of the
Unix malloc and for Linux loadable modules

Red-Black Tree

• Red-Black Tree property:
• Every node is either red or black

• The root of the tree is always black

• If a node is red, it’s children must be black

• Every path from a node to all of its descendant leaf nodes has the same
number of black nodes

Red-Black Tree: The Empire Strikes Back

• For insertion, Red-Black Trees use tree rotations and recolourings

• When a node V is added to the tree (standard BST insertion), mark it
as red

• If V’s parent and uncle are red, make them both black and make V’s
grandparent red. Repeat this from V’s grandparent.

• If V’s parent is red and the uncle is black, there are 4 cases of
rotations with V, the parent and the grandparent. Each case has a
specific tree rotation and recolouring that needs to be performed.
These aren’t too difficult to figure out.

Red-Black Tree review

• All updates and queries are O(logN)

• Red-Black Trees utilise fewer tree rotations than other BBSTs, making
the faster on average for lots of insertions

• Red-Black Trees should be used when there is a high ratio of
insertions to queries

The problem with BBSTs

• All insertions and queries can be performed in O(logN) with all of the
trees that have been covered

• Which tree you want to use depends on the constraints of the
scenario

• A problem arises: the people that create test data often create
pathological test cases that are designed to break commonly used
data structures

• Test-case authors can predict how these trees will look, so they know
what cases test them to their limits

The Solution

• How can the test-case authors predict how your tree will look if your
program doesn’t even know how the tree will look?

• Random numbers come to the rescue!

Treap

• A Treap is the amalgamation of a tree and a heap

• (By this point in the lecture, you should hopefully know what a tree
is)

• A heap is a data structure with the property that all of a node’s
children have a value less than it (or larger than it for a min-heap)

• Queries are performed identically to any BST

You can never have enough Treaps

• Insertion:
• Each node that gets inserted is assigned a random priority

• The node gets inserted in the tree according to the heap property on the
priorities

• The value of the node is used to decide whether it should be inserted into the
left or the right subtree

• Assuming the priorities assigned are true random numbers, the treap will
remain reasonably well balanced at all times

Treap Review

• All queries and insertions are O(logN)

• No matter what test data is given, the treap should always be
balanced allowing for very fast queries

• It is a good idea to seed your random number generator since your
submissions should always run identically if the same input data is
given

TL;DR

• Treaps are cool

