Balanced Binary Search Trees

Ralph McDougall
9 February 2019



What is a BBST?

* In graph theory, a tree is a connected, undirected graph that does not
contain any cycles

* A binary tree is a tree with one “root” node and where each node has
at most two “child” nodes

* A binary search tree is a binary tree where each node is assigned
some value and the property holds that for each node V, all nodes in
the left subtree of V have a value less than that of V and all nodes in
the right subtree of V have a value greater than that of V

* A balanced binary search tree is a binary search tree where all leaf
nodes are as close as possible to the root



Why is a binary search tree useful?

* If you want to query whether a given value is in the tree, you can
easily find where it would be if it were in the tree

* If the value A is less than the value of some node V, then you know
that A must lie in the left subtree of V and vice versa

* This makes querying whether or not a value is in a dataset
significantly faster than naively checking every value in the dataset

 Since one would expect the maximum height of the tree to be logN
where N is the number of nodes present, BSTs allow for O(logN)
queries



Why is a balanced binary search tree useful?

* Optimal BSTs are efficient because of the property that their height is
logN

 However, it is not guaranteed that the height is always logN. If new
values are inserted into the tree, one would add them as children of
some leaf nodes

* This can lead to the height of the tree becoming very large and thus
reducing the runtime to O(N)

* A balanced binary search tree introduces extra conditions that must
be satisfied at all times when adding values to ensure that the height
stays as small as possible



Tree rotations

* |n order to restructure the tree, BBSTs use “tree rotations”

=
-




Tree Rotations (continued)

* Tree rotations help to shorten the maximum distance from the root to
a leaf node

e Different BBSTs use different heuristics to determine where tree
rotations should take place



Types of BBSTs

e AVL tree
* Splay tree
 Red-Black tree



AVL Tree

* An AVL Tree maintains the property that the difference between a
node’s left subtree height and right subtree height is at most 1

* This means that the AVL tree always has as small of a height as
possible

* Since all queries are worst case O(h) where h is the height of the tree,
AVL trees allow for guaranteed O(logN) queries



AVL Tree (continued)

* AVL Insertions:

o Insert a node like you would for a normal BST

o Walk from the leaf node to the root

o Suppose the nodes visited are V,, V,, V,, ..., V, in that order

o If V; does not satisfy the AVL property anymore, perform some tree rotations
with vV, V. ;and V, ,

o There are 4 cases to consider that affect what tree rotations should be
performed (left-left, left-right, right-left, right-right)



AVL Tree (continued some more)

e Deletion:
* |f you want to remove a node from the tree, perform a standard BST deletion

* Walk up from where the deleted node was to the root and perform
rebalancing in the same manner as was done for insertion



AVL Tree Performance

* Queries are guaranteed to be O(logN)
* Insertions are guaranteed to be O(logN)
* Deletions are guaranteed to be O(logN)

* There can be quite a large constant overhead as a lot of rotations may
need to be performed during insertion and deletion

e An AVL Tree is thus not the ideal choice if there are a lot more
insertions and deletions than queries



Splay Tree

* A splay tree utilises the 80-20 rule

* 80% of the queries are to 20% of the elements in a set in a lot of
cases

* Thus, splay trees aim to keep the most recently queried values close
to the root



Splay Trees 2: Electric Boogaloo

* Querying a splay tree is initially identical to querying a normal BST

* Once the query is completed, tree rotations are performed repeatedly
until the last node visited is the new root node



Splay Tree review

* Query is O(logN) (albeit with a fairly large constant)
* Insertion and deletion are O(logN) too

 Splay trees are very useful because they are faster than Red-Black
trees and AVL Trees in most modern situations

e Splay trees are used in the gcc compiler, the implementation of the
Unix malloc and for Linux loadable modules



Red-Black Tree

* Red-Black Tree property:
* Every node is either red or black
* The root of the tree is always black
* If a nodeisred, it’s children must be black

* Every path from a node to all of its descendant leaf nodes has the same
number of black nodes



Red-Black Tree: The Empire Strikes Back

* For insertion, Red-Black Trees use tree rotations and recolourings

* When a node Vis added to the tree (standard BST insertion), mark it
as red

* If V’s parent and uncle are red, make them both black and make V’s
grandparent red. Repeat this from V’s grandparent.

* If V's parent is red and the uncle is black, there are 4 cases of
rotations with V, the parent and the grandparent. Each case has a
specific tree rotation and recolouring that needs to be performed.
These aren’t too difficult to figure out.



Red-Black Tree review

 All updates and queries are O(logN)

* Red-Black Trees utilise fewer tree rotations than other BBSTs, making
the faster on average for lots of insertions

* Red-Black Trees should be used when there is a high ratio of
Insertions to queries



The problem with BBSTs

 All insertions and queries can be performed in O(logN) with all of the
trees that have been covered

* Which tree you want to use depends on the constraints of the
scenario

* A problem arises: the people that create test data often create

pathological test cases that are designed to break commonly used
data structures

» Test-case authors can predict how these trees will look, so they know
what cases test them to their limits



The Solution

* How can the test-case authors predict how your tree will look if your
program doesn’t even know how the tree will look?

e Random numbers come to the rescue!



AVL Tree
@ed-Black Tree
Splay Tree

This is brilliant.

geq_Black 'l;;@ “

play Tree @

S < . 01 8621

But I like this.




Treap

* A Treap is the amalgamation of a tree and a heap

* (By this point in the lecture, you should hopefully know what a tree
is)

* A heap is a data structure with the property that all of a node’s
children have a value less than it (or larger than it for a min-heap)

e Queries are performed identically to any BST



You can never have enough Treaps

* [nsertion:
* Each node that gets inserted is assighed a random priority
* The node gets inserted in the tree according to the heap property on the
priorities
* The value of the node is used to decide whether it should be inserted into the
left or the right subtree

* Assuming the priorities assigned are true random numbers, the treap will
remain reasonably well balanced at all times



Treap Review

* All queries and insertions are O(logN)

* No matter what test data is given, the treap should always be
balanced allowing for very fast queries

* It is a good idea to seed your random number generator since your

submissions should always run identically if the same input data is
given



TL;DR

* Treaps are cool



