
Square Root Decomposition
IOI Training Camp 2 - 2022

Benjamin Kleyn

Why?

Sqrt Decomposition allows you to perform operations such as finding the sum or
maximum of the elements of a subarray, in operations, where is the
number of elements in the array.

What?

The idea of sqrt decomposition is to decompose the array into -sized blocks.

 (If is not a perfect square we can round it up)

Range Sum Query Example

Given an array

We break the array into 4 blocks with size 4 and precompute their sums in .

Range Sum Query Example

Now, for each query on a range , we can notice when the range spans over a
block, and then only add the value of the block, instead of adding each of the
elements in the block.

Sum of range

Range Sum Query Example

Sum of range

Range Sum Query Example

Implementation

Implementation

Implementation

Complexity

For each call of the sum function, it will take at most iterations to sum the
block-values, and at most iterations to sum the individual elements on the
sides, resulting in a time complexity of .

The update function in this case is , but in the case of range min- and max
queries, one might need to iterate over the block again to find the minimum or
maximum, causing it to also have a time complexity of .

For this reason, sqrt decomposition could possibly perform better than a segment
or fenwick tree on range sum queries if the number of updates is significantly
greater than the number of sum operations. (which is not usually the case)

Another epic use (range updates)

Problem - Process queries of following types:

● Add value to all array elements in range .
● Return value of element with index .

Solution:

Initially, and are filled with .

For each update, add to all blocks that are within the range, and to all other
individual elements that are at the ends of these blocks.

At any point in time, the value of the element at index is where is the
number of the block that contains .

Implementation

Range Updates and sums

Example problem:
codeforces.com/problemset/problem/13/E

1 2 3 4 5 6 7
Example Query type 2 :

If you throw ball into first hole, it will take 7 jumps to exit
the row, and the last hole it will visit is hole number 8,
so the expected output is “8 7”.

Solution :

One could pre-process the array from right to left to store the result for each query
in , but then each time there is an update to a hole, we need to repeat this,
which will be too slow, so instead we use sqrt decomposition.

For each hole i, use pre-processing to store the last hole that is visited in the same
block (last[i]), and how many jumps it takes to get to the next block cnt[i]. For each
jump query, we can jump from the current block to the next block instead of from
hole to hole, and for each update, we only need to re-process the block of the hole
that is changed. A block size of , gives a time complexity of for each
query.

Mo’s Algorithm

Based on sqrt decomposition, answers queries offline in .

Can be used for range mode queries and other range queries that would be too
complicated with just normal sqrt decomposition.

Mo’s Algorithm

The main idea is to move from one query that we know the answer of to another
by adding or removing array elements at either end to get from one range to
another.

For example, to move from query [1, 4] to [3, 5], we would need to remove the
elements 1 and 2, and add the element 5.

0 1 2 3 4 5

0 1 2 3 4 5

Basic implementation

We start with no elements added
and a starting range of [0, -1].
And then we move from query to
query updating our current range
and data structure (an integer)
as we go.

Sorting queries
To reduce the number of operations, we
first process all the queries with their left
value in the first block in order of their right
value, and then second block in order of
their right value, etc.

This way, for each of the queries, the left
value will change by at most , and for
each of the blocks of queries, the right
value will change by at most , resulting in
a time complexity of .

There are also sorting methods that are
faster but more complex.
https://codeforces.com/blog/entry/61203

https://codeforces.com/blog/entry/61203

Very general implementation

For queries that are more complex
than range sum, we use a different
data structure to represent the range
[cur_l, cur_r].

In general, we can use this exact code
for any application of mo’s algorithm,
and all we need to change is the add,
remove and get_answer functions to
fit the data structure.

Range Mode Query

In the case of range mode queries, we
can use unordered_map<int, int> to
keep count of each number and
set<pair<int, int>> to find the mode.

This makes the complexity

Example problem:
codeforces.com/contest/86/problem/D

https://codeforces.com/contest/86/problem/D

Solution:

Copy and paste Mo’s Algorithm and
change add, remove and get_answer
functions.

😎

Example problem:
codeforces.com/problemset/problem/221/D

Range [0, 6] has three 3’s, two 2’s, and one 1.
Thus the answer is 3, since there are three numbers x
such that x appears x times in the subarray.

https://codeforces.com/problemset/problem/221/D

Solution:

Same as the previous one.

😎

(in this case the values are too big so we can’t use an array to keep count) :

Things to check out for more info on this topic

Cp-algorithms page

Errichto’s video

Usaco article

Codeforces blog post about faster query sorting method

My solutions to the example problems I showed:

● Holes
● Powerful Array
● Little Elephant and Array

https://cp-algorithms.com/data_structures/sqrt_decomposition.html#practice-problems
http://youtu.be/BJhzd_VG61k
https://usaco.guide/plat/sqrt
https://codeforces.com/blog/entry/61203
https://codeforces.com/contest/13/submission/144107533
https://codeforces.com/contest/86/submission/144344592
https://codeforces.com/contest/221/submission/144344326

Any Questions?

