
Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Dynamic Programming

Robin Visser

IOI Training Camp
University of Cape Town

6 February 2016

1 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Overview

1 Background

2 Examples
Fibonacci
Coin counting
Longest common subsequence
Subset sum

3 Summary

2 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Background

• Dynamic programming is a programming technique which
separates a problem into simpler sub-problems.

• Each sub-problem is calculated just once. When the same
sub-problem is required to be calculated again, the stored
solution is used instead of recomputing the sub-problem.

• It is a frequently used technique in competitions and can
often reduce the time complexity of problems from
exponential to polynomial.

Example:

3 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Background

• Dynamic programming is a programming technique which
separates a problem into simpler sub-problems.

• Each sub-problem is calculated just once. When the same
sub-problem is required to be calculated again, the stored
solution is used instead of recomputing the sub-problem.

• It is a frequently used technique in competitions and can
often reduce the time complexity of problems from
exponential to polynomial.

Example:

3 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Background

• Dynamic programming is a programming technique which
separates a problem into simpler sub-problems.

• Each sub-problem is calculated just once. When the same
sub-problem is required to be calculated again, the stored
solution is used instead of recomputing the sub-problem.

• It is a frequently used technique in competitions and can
often reduce the time complexity of problems from
exponential to polynomial.

Example:

3 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Background

• Dynamic programming is a programming technique which
separates a problem into simpler sub-problems.

• Each sub-problem is calculated just once. When the same
sub-problem is required to be calculated again, the stored
solution is used instead of recomputing the sub-problem.

• It is a frequently used technique in competitions and can
often reduce the time complexity of problems from
exponential to polynomial.

Example:

3 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Background

• Dynamic programming is a programming technique which
separates a problem into simpler sub-problems.

• Each sub-problem is calculated just once. When the same
sub-problem is required to be calculated again, the stored
solution is used instead of recomputing the sub-problem.

• It is a frequently used technique in competitions and can
often reduce the time complexity of problems from
exponential to polynomial.

Example: What is the value of 1 + 3 + 9 + 2 + 4 + 8 + 10

4 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Background

• Dynamic programming is a programming technique which
separates a problem into simpler sub-problems.

• Each sub-problem is calculated just once. When the same
sub-problem is required to be calculated again, the stored
solution is used instead of recomputing the sub-problem.

• It is a frequently used technique in competitions and can
often reduce the time complexity of problems from
exponential to polynomial.

Example: What is the value of 1 + 3 + 9 + 2 + 4 + 8 + 10 + 1

5 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Fibonacci sequence

Problem

Calculate the nth Fibonacci number. (The Fibonacci sequence
is generated as F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2

• One can easily code a recursive solution

def fibonacci(n):

if n <= 1: return n

return fibonacci(n-1) + fibonacci(n-2)

• This will take exponential time, therefore very slow! It
would take about 4 trillion years to calculate F100 (longer
than the age of the universe)

6 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Fibonacci sequence

Problem

Calculate the nth Fibonacci number. (The Fibonacci sequence
is generated as F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2

• One can easily code a recursive solution

def fibonacci(n):

if n <= 1: return n

return fibonacci(n-1) + fibonacci(n-2)

• This will take exponential time, therefore very slow! It
would take about 4 trillion years to calculate F100 (longer
than the age of the universe)

6 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Fibonacci sequence

Problem

Calculate the nth Fibonacci number. (The Fibonacci sequence
is generated as F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2

• One can easily code a recursive solution

def fibonacci(n):

if n <= 1: return n

return fibonacci(n-1) + fibonacci(n-2)

• This will take exponential time, therefore very slow! It
would take about 4 trillion years to calculate F100 (longer
than the age of the universe)

6 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Fibonacci sequence

Problem

Calculate the nth Fibonacci number. (The Fibonacci sequence
is generated as F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2

• One can easily code a recursive solution

def fibonacci(n):

if n <= 1: return n

return fibonacci(n-1) + fibonacci(n-2)

• This will take exponential time, therefore very slow! It
would take about 4 trillion years to calculate F100 (longer
than the age of the universe)

6 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Fibonacci sequence

• Clearly, a better approach is required.

• Instead of recomputing the same values, we store them in
memory. This is called memoisation.

• If our result has been already computed, we simply retrieve
the solution from memory instead of recomputing the
result.

def fibonacci(n):

if memo[n] >= 0: return memo[n]

if n <= 1: return n

memo[n] = fibonacci(n-1) + fibonacci(n-2)

return memo[n]

7 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Fibonacci sequence

• Clearly, a better approach is required.

• Instead of recomputing the same values, we store them in
memory. This is called memoisation.

• If our result has been already computed, we simply retrieve
the solution from memory instead of recomputing the
result.

def fibonacci(n):

if memo[n] >= 0: return memo[n]

if n <= 1: return n

memo[n] = fibonacci(n-1) + fibonacci(n-2)

return memo[n]

7 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Fibonacci sequence

• Clearly, a better approach is required.

• Instead of recomputing the same values, we store them in
memory. This is called memoisation.

• If our result has been already computed, we simply retrieve
the solution from memory instead of recomputing the
result.

def fibonacci(n):

if memo[n] >= 0: return memo[n]

if n <= 1: return n

memo[n] = fibonacci(n-1) + fibonacci(n-2)

return memo[n]

7 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Fibonacci sequence

• Clearly, a better approach is required.

• Instead of recomputing the same values, we store them in
memory. This is called memoisation.

• If our result has been already computed, we simply retrieve
the solution from memory instead of recomputing the
result.

def fibonacci(n):

if memo[n] >= 0: return memo[n]

if n <= 1: return n

memo[n] = fibonacci(n-1) + fibonacci(n-2)

return memo[n]

7 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Fibonacci sequence

• This already optimises the problem down to linear time.

• We still require O(n) memory though.

• A bottom-up approach can reduce memory usage to
constant space

def fibonacci(n):

if n == 0: return 0

prevFib, curFib = 0, 1

for i in range(n-1):

newFib = prevFib + curFib

prevFib, curFib = curFib, newFib

return curFib

8 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Fibonacci sequence

• This already optimises the problem down to linear time.

• We still require O(n) memory though.

• A bottom-up approach can reduce memory usage to
constant space

def fibonacci(n):

if n == 0: return 0

prevFib, curFib = 0, 1

for i in range(n-1):

newFib = prevFib + curFib

prevFib, curFib = curFib, newFib

return curFib

8 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Fibonacci sequence

• This already optimises the problem down to linear time.

• We still require O(n) memory though.

• A bottom-up approach can reduce memory usage to
constant space

def fibonacci(n):

if n == 0: return 0

prevFib, curFib = 0, 1

for i in range(n-1):

newFib = prevFib + curFib

prevFib, curFib = curFib, newFib

return curFib

8 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Fibonacci sequence

• This already optimises the problem down to linear time.

• We still require O(n) memory though.

• A bottom-up approach can reduce memory usage to
constant space

def fibonacci(n):

if n == 0: return 0

prevFib, curFib = 0, 1

for i in range(n-1):

newFib = prevFib + curFib

prevFib, curFib = curFib, newFib

return curFib

8 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Fibonacci sequence

• This approach requires only O(n) time and O(1) memory.

• Usually takes less time in practice due to function call
overhead.

• In general, there are three things to consider:
• State space
• Recurrence relation
• Traversal

• Both approaches have their pros and cons. Recursion with
memoisation can sometimes be easier to conceptualise
(don’t need to worry about traversal) although the fastest
solutions can often only be done as a bottom-up DP.

9 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Fibonacci sequence

• This approach requires only O(n) time and O(1) memory.

• Usually takes less time in practice due to function call
overhead.

• In general, there are three things to consider:
• State space
• Recurrence relation
• Traversal

• Both approaches have their pros and cons. Recursion with
memoisation can sometimes be easier to conceptualise
(don’t need to worry about traversal) although the fastest
solutions can often only be done as a bottom-up DP.

9 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Fibonacci sequence

• This approach requires only O(n) time and O(1) memory.

• Usually takes less time in practice due to function call
overhead.

• In general, there are three things to consider:
• State space
• Recurrence relation
• Traversal

• Both approaches have their pros and cons. Recursion with
memoisation can sometimes be easier to conceptualise
(don’t need to worry about traversal) although the fastest
solutions can often only be done as a bottom-up DP.

9 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Fibonacci sequence

• This approach requires only O(n) time and O(1) memory.

• Usually takes less time in practice due to function call
overhead.

• In general, there are three things to consider:
• State space
• Recurrence relation
• Traversal

• Both approaches have their pros and cons. Recursion with
memoisation can sometimes be easier to conceptualise
(don’t need to worry about traversal) although the fastest
solutions can often only be done as a bottom-up DP.

9 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Fibonacci sequence

• This approach requires only O(n) time and O(1) memory.

• Usually takes less time in practice due to function call
overhead.

• In general, there are three things to consider:
• State space
• Recurrence relation
• Traversal

• Both approaches have their pros and cons. Recursion with
memoisation can sometimes be easier to conceptualise
(don’t need to worry about traversal) although the fastest
solutions can often only be done as a bottom-up DP.

9 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Fibonacci sequence

• This approach requires only O(n) time and O(1) memory.

• Usually takes less time in practice due to function call
overhead.

• In general, there are three things to consider:
• State space
• Recurrence relation
• Traversal

• Both approaches have their pros and cons. Recursion with
memoisation can sometimes be easier to conceptualise
(don’t need to worry about traversal) although the fastest
solutions can often only be done as a bottom-up DP.

9 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Fibonacci sequence

• This approach requires only O(n) time and O(1) memory.

• Usually takes less time in practice due to function call
overhead.

• In general, there are three things to consider:
• State space
• Recurrence relation
• Traversal

• Both approaches have their pros and cons. Recursion with
memoisation can sometimes be easier to conceptualise
(don’t need to worry about traversal) although the fastest
solutions can often only be done as a bottom-up DP.

9 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Coin counting

Problem

Given a set of n coins, each with value v1, v2, . . . , vn, make
change to the value of M using the least amount of coins

• Let coins[x] be the optimal solution for making x change.

• Note that we having the following dependency:
coins[X] = 1 + min{coins[X − v1, X − v2, . . . , X − vi}
for all i where vi ≤ X.

• This immediately suggests a DP approach.

10 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Coin counting

Problem

Given a set of n coins, each with value v1, v2, . . . , vn, make
change to the value of M using the least amount of coins

• Let coins[x] be the optimal solution for making x change.

• Note that we having the following dependency:
coins[X] = 1 + min{coins[X − v1, X − v2, . . . , X − vi}
for all i where vi ≤ X.

• This immediately suggests a DP approach.

10 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Coin counting

Problem

Given a set of n coins, each with value v1, v2, . . . , vn, make
change to the value of M using the least amount of coins

• Let coins[x] be the optimal solution for making x change.

• Note that we having the following dependency:
coins[X] = 1 + min{coins[X − v1, X − v2, . . . , X − vi}
for all i where vi ≤ X.

• This immediately suggests a DP approach.

10 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Coin counting

Problem

Given a set of n coins, each with value v1, v2, . . . , vn, make
change to the value of M using the least amount of coins

• Let coins[x] be the optimal solution for making x change.

• Note that we having the following dependency:
coins[X] = 1 + min{coins[X − v1, X − v2, . . . , X − vi}
for all i where vi ≤ X.

• This immediately suggests a DP approach.

10 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Code

Pseudocode:

coins[0] = 0

for i from 1 to m:

for j from 1 to n:

if v[j] < i:

coins[i] = min(coins[i], 1 + coins[i-v[j]])

return coins[m]

• Notice that to calculate some value of coins[x] requires
O(n) time.

• Final algorithm hences run in O(nM) time.
(pseudo-polynomial time)

• This is a special case of the unbounded knapsack problem
(where value of each object is 1)

11 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Code

Pseudocode:

coins[0] = 0

for i from 1 to m:

for j from 1 to n:

if v[j] < i:

coins[i] = min(coins[i], 1 + coins[i-v[j]])

return coins[m]

• Notice that to calculate some value of coins[x] requires
O(n) time.

• Final algorithm hences run in O(nM) time.
(pseudo-polynomial time)

• This is a special case of the unbounded knapsack problem
(where value of each object is 1)

11 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Code

Pseudocode:

coins[0] = 0

for i from 1 to m:

for j from 1 to n:

if v[j] < i:

coins[i] = min(coins[i], 1 + coins[i-v[j]])

return coins[m]

• Notice that to calculate some value of coins[x] requires
O(n) time.

• Final algorithm hences run in O(nM) time.
(pseudo-polynomial time)

• This is a special case of the unbounded knapsack problem
(where value of each object is 1)

11 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Code

Pseudocode:

coins[0] = 0

for i from 1 to m:

for j from 1 to n:

if v[j] < i:

coins[i] = min(coins[i], 1 + coins[i-v[j]])

return coins[m]

• Notice that to calculate some value of coins[x] requires
O(n) time.

• Final algorithm hences run in O(nM) time.
(pseudo-polynomial time)

• This is a special case of the unbounded knapsack problem
(where value of each object is 1)

11 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Longest common subsequence

Problem

Given two strings, find the longest common subsequence.

Example: Longest common subsequence of GAC and AGCAT
is {AC, GC, GA}.

• Can be done using a 2D dynamic programming approach.

• Consider the LCS of prefixes of the given strings.

12 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Longest common subsequence

Problem

Given two strings, find the longest common subsequence.

Example: Longest common subsequence of GAC and AGCAT
is {AC, GC, GA}.

• Can be done using a 2D dynamic programming approach.

• Consider the LCS of prefixes of the given strings.

12 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Longest common subsequence

Problem

Given two strings, find the longest common subsequence.

Example: Longest common subsequence of GAC and AGCAT
is {AC, GC, GA}.

• Can be done using a 2D dynamic programming approach.

• Consider the LCS of prefixes of the given strings.

12 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Algorithm

• Given two strings X and Y , let Xi denote the first i
character of X and Yj denote the first j characters of Y .

• Let LCS[i][j] denote the LCS of Xi and Yj .

• We have the following relation:

LCS[i][j] =


0 if i = 0 or j = 0

LCS[i− 1][j − 1] + 1 if xi = yj

max(LCS[i][j − 1], LCS[i− 1][j]) if xi 6= yj

• Algorithm runs in O(nm) time where n is length of X and
m is length of Y .

13 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Algorithm

• Given two strings X and Y , let Xi denote the first i
character of X and Yj denote the first j characters of Y .

• Let LCS[i][j] denote the LCS of Xi and Yj .

• We have the following relation:

LCS[i][j] =


0 if i = 0 or j = 0

LCS[i− 1][j − 1] + 1 if xi = yj

max(LCS[i][j − 1], LCS[i− 1][j]) if xi 6= yj

• Algorithm runs in O(nm) time where n is length of X and
m is length of Y .

13 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Algorithm

• Given two strings X and Y , let Xi denote the first i
character of X and Yj denote the first j characters of Y .

• Let LCS[i][j] denote the LCS of Xi and Yj .

• We have the following relation:

LCS[i][j] =


0 if i = 0 or j = 0

LCS[i− 1][j − 1] + 1 if xi = yj

max(LCS[i][j − 1], LCS[i− 1][j]) if xi 6= yj

• Algorithm runs in O(nm) time where n is length of X and
m is length of Y .

13 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Algorithm

• Given two strings X and Y , let Xi denote the first i
character of X and Yj denote the first j characters of Y .

• Let LCS[i][j] denote the LCS of Xi and Yj .

• We have the following relation:

LCS[i][j] =


0 if i = 0 or j = 0

LCS[i− 1][j − 1] + 1 if xi = yj

max(LCS[i][j − 1], LCS[i− 1][j]) if xi 6= yj

• Algorithm runs in O(nm) time where n is length of X and
m is length of Y .

13 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Algorithm

• Given two strings X and Y , let Xi denote the first i
character of X and Yj denote the first j characters of Y .

• Let LCS[i][j] denote the LCS of Xi and Yj .

• We have the following relation:

LCS[i][j] =


0 if i = 0 or j = 0

LCS[i− 1][j − 1] + 1 if xi = yj

max(LCS[i][j − 1], LCS[i− 1][j]) if xi 6= yj

• Algorithm runs in O(nm) time where n is length of X and
m is length of Y .

13 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Code

Pseudocode:

for i from 0 to m: C[i][0] = 0

for j from 0 to n: C[0][j] = 0

for i from 1 to m:

for j from 1 to n:

if X[i] = Y[j]:

C[i][j] = C[i-1][j-1] + 1

else:

C[i,j] = max(C[i][j-1], C[i-1][j])

• To recreate the subsequence, one can backtrack starting
from C[m][n].

• This is a commonly used technique in dynamic
programming to recreate the optimal state required.

14 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Code

Pseudocode:

for i from 0 to m: C[i][0] = 0

for j from 0 to n: C[0][j] = 0

for i from 1 to m:

for j from 1 to n:

if X[i] = Y[j]:

C[i][j] = C[i-1][j-1] + 1

else:

C[i,j] = max(C[i][j-1], C[i-1][j])

• To recreate the subsequence, one can backtrack starting
from C[m][n].

• This is a commonly used technique in dynamic
programming to recreate the optimal state required.

14 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Code

Pseudocode:

for i from 0 to m: C[i][0] = 0

for j from 0 to n: C[0][j] = 0

for i from 1 to m:

for j from 1 to n:

if X[i] = Y[j]:

C[i][j] = C[i-1][j-1] + 1

else:

C[i,j] = max(C[i][j-1], C[i-1][j])

• To recreate the subsequence, one can backtrack starting
from C[m][n].

• This is a commonly used technique in dynamic
programming to recreate the optimal state required.

14 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Subset sum

Problem

Given a set of n integers x1, x2, . . . , xn, determine if there
exists a subset whose sum is S.

• Again, a 2D state space will be used.

• We define a boolean valued function Q(i, s) to be true iff
there is a nonempty subset of x1, . . . , xi which sums to s.

15 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Subset sum

Problem

Given a set of n integers x1, x2, . . . , xn, determine if there
exists a subset whose sum is S.

• Again, a 2D state space will be used.

• We define a boolean valued function Q(i, s) to be true iff
there is a nonempty subset of x1, . . . , xi which sums to s.

15 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Subset sum

Problem

Given a set of n integers x1, x2, . . . , xn, determine if there
exists a subset whose sum is S.

• Again, a 2D state space will be used.

• We define a boolean valued function Q(i, s) to be true iff
there is a nonempty subset of x1, . . . , xi which sums to s.

15 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Algorithm

• Let A be the sum of the negative values and B the sum of
the positive values.

• We have the following relation:

Q[i][s] =


x1 == s if i = 1

false if s < A or s > B

Q[i− 1][s] or xi == s otherwise

or Q[i− 1][s− xi]

• Algorithm runs in O(n(B −A)) time (pseudo-polynomial).

16 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Algorithm

• Let A be the sum of the negative values and B the sum of
the positive values.

• We have the following relation:

Q[i][s] =


x1 == s if i = 1

false if s < A or s > B

Q[i− 1][s] or xi == s otherwise

or Q[i− 1][s− xi]

• Algorithm runs in O(n(B −A)) time (pseudo-polynomial).

16 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Algorithm

• Let A be the sum of the negative values and B the sum of
the positive values.

• We have the following relation:

Q[i][s] =


x1 == s if i = 1

false if s < A or s > B

Q[i− 1][s] or xi == s otherwise

or Q[i− 1][s− xi]

• Algorithm runs in O(n(B −A)) time (pseudo-polynomial).

16 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Algorithm

• Let A be the sum of the negative values and B the sum of
the positive values.

• We have the following relation:

Q[i][s] =


x1 == s if i = 1

false if s < A or s > B

Q[i− 1][s] or xi == s otherwise

or Q[i− 1][s− xi]

• Algorithm runs in O(n(B −A)) time (pseudo-polynomial).

16 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Code

Pseudocode:

Q[1][x1] = True

for i from 2 to n:

for s from A to B:

if Q[i-1][s] or Q[i-1][s-xi] or xi==s:

Q[i][s] = True

return Q[n][S]

• To count number of subsets that sum to S, just replace
boolean values with integer values and add instead of or.

• Again, backtracking can be used to recreate the actual
subset.

17 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Code

Pseudocode:

Q[1][x1] = True

for i from 2 to n:

for s from A to B:

if Q[i-1][s] or Q[i-1][s-xi] or xi==s:

Q[i][s] = True

return Q[n][S]

• To count number of subsets that sum to S, just replace
boolean values with integer values and add instead of or.

• Again, backtracking can be used to recreate the actual
subset.

17 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Code

Pseudocode:

Q[1][x1] = True

for i from 2 to n:

for s from A to B:

if Q[i-1][s] or Q[i-1][s-xi] or xi==s:

Q[i][s] = True

return Q[n][S]

• To count number of subsets that sum to S, just replace
boolean values with integer values and add instead of or.

• Again, backtracking can be used to recreate the actual
subset.

17 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Summary

• Dynamic programming is a widely adaptable technique
that can be used in many different situations.

• Whenever different states exist and previous states can be
used to construct bigger ones, it’s probably DP.

• There can often be several different ways to do a DP with
differing time complexities, so even if you have a valid
solution, always try to find optimisations.

18 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Summary

• Dynamic programming is a widely adaptable technique
that can be used in many different situations.

• Whenever different states exist and previous states can be
used to construct bigger ones, it’s probably DP.

• There can often be several different ways to do a DP with
differing time complexities, so even if you have a valid
solution, always try to find optimisations.

18 / 18



Dynamic
Programming

Robin Visser

Background

Examples

Fibonacci

Coin counting

Longest
common
subsequence

Subset sum

Summary

Summary

• Dynamic programming is a widely adaptable technique
that can be used in many different situations.

• Whenever different states exist and previous states can be
used to construct bigger ones, it’s probably DP.

• There can often be several different ways to do a DP with
differing time complexities, so even if you have a valid
solution, always try to find optimisations.

18 / 18


	Background
	Examples
	Fibonacci
	Coin counting
	Longest common subsequence
	Subset sum

	Summary

